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Abstract 
 
This report deals with the influences of a) the extra moving masses and b) the overhanging 
beam ends on the measured deflections in the dynamic four point bending test.  
 
The analytical solution is deduced for both cases. In the case of overhanging beam-ends the 
exact analytical solution can be obtained directly. However, if extra moving masses (point 
loads) are involved the numerical value for the analytical solution has to be obtained by an 
iteration procedure. In the included Excel files this value is obtained after nine iterations 
starting with the values obtained for the case with only overhanging beam-ends. Only when 
the chosen frequency is near the Eigen frequencies of the system more iteration will be 
necessarily.  
 
After obtaining the correct values for the deflection and the phase lag at an arbitrarily 
position on the beam the modified first order approximation is applied for the 
backcalculation of the input values for the stiffness modulus and (material) phase lag. In this 
way an impression is obtained for the mistakes made in the backcalculation procedures.  
 
Next to the chapters dealing with the theory a chapter “Guidelines” is given for the use of 
the included zipped Excel files. 
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Disclaimer 
This working paper is issued to give those interested an opportunity to acquaint themselves with progress in this particular field of 
research. It must be stressed that the opinions expressed in this working paper do not necessarily reflect the official point of view or the 
policy of the director-general of the Rijkswaterstaat. The information given in this working paper should therefore be treated with 
caution in case the conclusions are revised in the course of further research or in some other way. The Kingdom of the Netherlands 
takes no responsibility for any losses incurred as a result of using the information contained in this working paper. 
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The influence of extra moving masses and overhanging beam ends 
in the Four Point Bending Test 

 

Introduction and Background 
 

The basic theory of the four point bending test (4PB) is well described in part I of this series (Theory 
of the Four Point Dynamic bending test; P-DWW-96-008; ISBN-90-3693-712-4) and will not be 
repeated. Thus for a good understanding of the formulas it is advised to use part I next to part II. For 
a good description of the 4PB test is referred to: Description of fatigue test method Four Point 
Bending (4PB) in use at the Dutch Road & Hydraulic Engineering Division (DWW) & Technical 
University Delft & Dutch Consultancy Agencies; DWW-2002-082; July 2002. Photos of an old and a 
new clamping device are given below in figure 1 and 2. 
 

 
 

 
 

Figure 1. The “old” bending device.  
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Figure 2.  The new four point bending device 

In the four point bending test the applied force will not only be used for bending the beam but also 
for the movements of parts of the hydraulic jack and of the inner clamps and if present the sensor 
which is placed on the beam for measuring the deflection. In the equations the influence of the mass 
of the sensor can be replaced by an arbitrarily mass at the position Xsensor. Thus the losses due to the 
movement of the masses have to be taken into account in the data processing. In the following 

equations the time function 
t.ie 0ω

 has been omitted.  
 

Theory 
 

First of all we will use the following notations for the orthogonal polynomials used in the solution 
procedure (see P-DWW-96-008): 
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With L* = Total length of the beam; A = distance between inner and outer clamp and ∆ = distance 
between beginning of beam (x=0) and the first outer clamp. The distance A+∆  is also called Xclamp 

 

The total deflection Vtot{x}= { } { }x.i
tot

*
totex V̂ ϕ−×  has to satisfy the differential equation 

including the boundary conditions at the beginning of the beam (moment=0) and at the outer clamp 
(deflection=0). The deflection is build up out of the sum of three types of deflections. 
 
The first type Va {x} will satisfy the differential equation including the external force Fo and the 
forces due to extra moving masses (particular solution). It is assumed that this deflection can be 
written as an infinite summation of the polynomials Tn{x} with n being an odd integer number. This 
is correct if only the external force and the force due to an extra moving mass at the inner clamps are 
present, because these forces can also be developed in the polynomials Tn{x}. However, a mass 
force on a different position (e.g. a sensor in the middle of the beam) hampers in away such a simple 
solution procedure. In principle another deflection Va {x} has to be added to satisfy this mass force. 
This later deflection (in case of a mass at location Xsensor) is build up out of the polynomials Tn

*{x}.  
Nevertheless, by rewriting the mass term it is possible to handle the problem with only the first 
deflection Va {x} type. 

 { } { }
{ } { } { }xT.M.SxT.
xT

xT
.MxT.M nsensornn

n

*
n

sensor
*
nsensor =




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
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The mass forces (point load) at the inner clamp and at the position of the sensor are given by: 
 

{ } { }sensortotsensor
2
0clamptotclamp

2
0 X V.M.     &       X V.M. ωω                             [4] 

 
 
The deflection Va {x} is represented by: 
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{ } { } { } { } { }x a.i
an

*
n.i

nn,aa exVx TeAx Vx V ϕϕ −
∧

− ×=



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The individual amplitude of each term at position x is given by: { } x TA V̂ nnn,a ×=  

By using the polynomials this deflection already satisfies the boundary condition at the 

beginning of the beam (x = 0 ; moment = 0). If ∆ equals zero (outer clamp at position x=0) the 

boundary condition for the deflection (=0 at x=∆) is also fulfilled. Furthermore, note that the phase 

lag ϕn
* for each separate deflection term doesn’t depend on the position x along the beam; but 

because the polynomial Tn {x} can change of sign along the beam for n values above 1, the final 

(observed/measured) phase lag (denoted as ϕa,n
*) may change along the beam. Due to the summation 

of all terms the resulting total phase lag ϕa
*  (= ϕtot

* for ∆=0) will be a function of the position x 
along the beam.  

 

If ∆ > 0 the boundary condition (deflection = 0) at the outer clamp (x=∆) is not yet fulfilled. In that 

case two other types of solutions Vc {x} and Vd {x} of the homogenous differential equation are 
needed.  
 
The chosen types for the deflections Vc {x} and Vd {x} are solutions of the differential 
equation without the external force Fo and the forces due to extra moving masses (although 
these last forces are related to the total deflections at those locations). 
 

      
{ } [ ] { }( ) { } [ ] { }( )
{ } αβ .i

2

*L
0

ndnc

e)x(x f 

  ;ix fCosDx V       ;x fCosCx V

×−×=

××=×= ∑∑
               [6] 

The parameter α is equal to -ϕ/4. 

 It looks odd to use a summation sign because the function f{x} doesn’t depend on the dummy integer 
n and both deflection functions can be written using only one constant:  

 

 [ ] [ ]∑∑ == ntotntot DD      ;CC                                                                                         [7] 

 
However, using this summation makes it easier to understand how the boundary conditions can be 
fulfilled: 
1) Each coefficient Dn is related to Cn by the fact that at the beginning of the beam (x=0) the 

moment (strain) has to be zero. This leads of course to the same relation for all n values. 
Mark that the deflection Va {x} already meets this requirement by the term: 







 ××

*L

x
nSin π   

2)        Afterwards each coefficient Cn can be determined by the requirement that at the outer clamp 

(x=∆) the total deflection has to be zero. Which implies that for each term n the summation

  Va,n + Vc,n+ Vd,n  must be zero at this location: 
 

                
{ } { }

{ } { } { } 0xVxVxV

exV̂

n,dn,cn,a

xn,tot.i
n,tot

==+=+=

=×= =−

∆∆∆

∆ ∆ϕ

                                              [8] 
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For solving the differential equation the external force F0 at the two inner clamps has to be 
transformed into a force distribution along the beam:   

{ }[ ]∑×⇒  xT
L

F.2
    F n*

0
0                                                                       [9] 

Using the same procedure for the extra mass forces at the two (moving) inner clamps (x=A+∆) 

and at the position of the deflection sensor (x=xsensor) will lead to: 
 

{ } { }
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The deflection term Va must satisfy the differential equation with regard to the load conditions.  
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The deflection Va can also be written as a summation of  the polynomials Tn{x}. It follows the 
deflection Va has to satisfy the next equation: 
 

{ }[ ] { }[ ] { } { }

{ }[ ]∑

∑∑
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××

−×−×
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With:               
hb

IS

L

n mix
4*

44
2
n ××

×
×

×
=

ρ
πξ              [14] 

If no extra moving mass forces (point loads) are present closed analytical solutions are known. If 
these mass forces are present the solution has to be obtained by an iteration procedure. The iteration 
procedure will be outlined in the next paragraphs. 
First of all the problem will be discussed in which the length L between the two outer clamps is 
equal to the actual length L* of the beam (∆=0).  
 

 
A FIRST ORDER APPROXIMATION OF THE SOLUTION FOR ∆=0 

FORMS IN FACT THE BASE OF THE FORMULAS USED IN 
BACKCALCULATION PROCEDURES FOR THE DETERMINATION OF   

STIFFNESS AND (MATERIAL) PHASE LAG FROM THE MEASURED 
DEFLECTION AND PHASE LAG BETWEEN FORCE AND DEFLECTION
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The case ∆=0  
 
If the beam length L* equals the length L between the two outer clamps (∆=0) a simplified 

procedure can be followed if the phase lag ϕtot
*{x} doesn’t vary (much) along the beam. 

The function Tn{x} alters into: 
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Therefore the functions Vc{x} and Vd{x} are not needed to fulfil the boundary requirement at the 
outer clamp (x=∆=0) and the remaining deflection  Va{x} satisfies already both boundary 
requirements and can be represented by: 
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it follows that each separate term has to fulfil the following equation: 
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The deflections at the positions of the extra moving masses Va{ xclamp=A+∆ =A} and  
Va{x=xsensor} are given by: 
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*
m.i

mm,aa ××==== −∑∑ ϕ
         [20] 
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Dividing by the term  Pn {x} leads to the following equation for each separate term: 
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The next move is to rewrite this equation in such a way that it will resemble the equation for a 
bending beam without extra moving masses. 
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If  the terms between the brackets are constants (ϕm
* =  ϕn

*) the solution will be similar to the one 
for a bending beam without extra moving masses but with a heavier beam. The coefficients of the 
solution without extra moving masses are given by: 
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Because the first term (n=1) represents already more than 90 % of the total deflection a first order 
approximation for the separate terms will be given by: 
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If the ratio A1/ An is taken equal to 1 this equation will be equal to the equation for a beam without 

extra moving masses if the term ω0
2 is replaced by: 
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The approximation above forms the base in the backcalculation procedure, 
 

 which will be outlined later 
 

 

Simplified Iteration Procedure if ∆=0 
 
The first order approximation can be used for the calculation of the deflection by using an iteration 
procedure as described in part I (P-DWW-96-008). It should be marked that this procedure is not 
used in the final calculation. The amplitude of the deflection at position X can be presented as: 
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in which the coefficients g (and f) are close to one. The next step is the introduction of the 
parameter:  
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The starting values for the correction coefficients g0, gn, f0 and fn  are 1.  With these starting 
values the total deflections at x = xclamp and x = xsensor are calculated using equations 17, 24 and 
25 and the transformation for the radial frequency given by equation 27.  
The ratios of the total deflections at x = xclamp and x = xsensor  and the first terms are used for a 
better approximation of g0 and f0. The coefficients g and f  ought to be nearly the same.  

{ } { } { } { }1n,clampaclampaclamp11clampa0 XVXVXPAXVg =

∧∧∧
=×=                       [30] 
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{ } { } { } { }1n,sensorasensorasensor11sensora0 XVXVXPAXVf =

∧∧∧
=×=                [31] 

The second steps are the calculations of ‘all’ the coefficients { } { }clampnclampn,an XPXVA
∧

=  

The same procedure is repeated for the deflections at x = xsensor . The new values for An  can be 
taken as a weighed mean value. The third step is the calculation of a better approximation for gn 
and fn. 

{ } { }( )sensorclamp1n
4

00sensorclampann X;XPAn]f;g[X;XVf;g ×××=
∧

    [32] 

  Of course g1 and f1 will be equal to 1. 
  These three steps are repeated until the coefficients and the deflections do not change anymore. 

The obtained figures for gn , fn  and An can now be used for the calculation of the deflection along 
the whole beam. 

  

General Iteration Procedure for ∆ > 0 
 
For the general differential equation (∆ > 0 and one or more extra moving masses) the following 
procedure can be used. First the deflection equation for each individual term is divided by the 
polynomial Tn{x} leading to the following equation: 
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Rearrangement of this equation leads to: using former (old) values for 
*
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nn ;V;;A ϕϕ
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terms between the brackets gives: 
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and 
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




















++

=





 −−

∧






 −−

∧

n

*
nsensorx*

tot.i

n

sensortot

beam

sensor

*
nclampx*

tot.i

n

clamptot

beam

clamp

n

S.e.
A

xV
.

M

M.2

e.
A

xV
.

M

M.2
1

Argument
ϕϕ

ϕϕ

φ                [43] 

 
The iteration process starts with the determination of the analytical solution for the bending of a 
beam without any extra moving masses. The step sequence is as follows: 
 
1) From the equations 6, 7 and 8 for the boundary conditions the complex coefficients Cn and Dn 

are related to 
*
n.i

n e.A ϕ−
. These last coefficients (particular solution) are at the start of the 

iteration process determined by the non-homogenous differential equation without the extra 
moving mass forces. 

2) Calculate the total deflections Vtot at the locations Xclamp and Xsensor. using at least 25 n values. 
3) Calculate for all n values the parameters γn and φn   using equations 42 and 43. 
4) Determine for n values new estimates for An and ψn

*  using equation 41. 
5) Calculate for all n values the new estimates for ϕn

*   
6) Repeat step 1 to 5 but in step 1 the new estimates for An  and ϕn

*  from step 4 and 5 are used for 
the new estimates of Cn and Dn which are based on the boundary conditions for x = 0 and x = ∆. 
This sequence is repeated until the deflections in step 2 don’t change significantly. 
 

The main advantage of this approach is that equation 41 is similar to the one without extra moving 
mass forces. Although a lot of rewriting is needed this equation can be easily used in an iteration 
procedure.  
Another faster and direct approach can be achieved by adding the extra moving mass forces to the 
applied external force. This leads to: 

[ ]
{ } { }

{ } { }

















++

=−
−

∧

−∧

−

n
sensorx*

tot.i
sensortot

0

sensor

clampx*
tot.i

clamptot

0

clamp

beam

02
0

2
n

.i*
n.i

n

S.e.xV.
F

M

e.xV.
F

M
1

.
M

F.2
.e.e.A

ϕ

ϕ

ϕϕ ωξ

  

= 1
1

02 θ.i

beam
e.Z.

M

F.
                    [43] 

 

Rewriting [ ]2
0

2 ω−ξϕ
n

.i .e  as 2
2

θ.ie.Z  leads to the very simple iteration equation: 

 

( )21.i

2

1

beam

0
*
n.i

n e.
Z

Z
.

M

F.2
e.A θθϕ −− =                      [44] 

Both iteration procedures work fine. However, if the applied frequency is close to a resonance 
frequency the first procedure seems to be more stable. 
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Backcalculation procedure  
 
First of all two new definitions R{x} and R’{x} are introduced: 

{ } { }






 ××






 ××

=
×

=

L

X
Sin

L

A
Sin2

xP2
xR

4

1

4

ππ

ππ
       [33] 

 

{ }
2

2

2

2

L

A

L

X
3

L

X
3

1

A

L12
x'R

−×−×
×

×
=         [34] 

In fact R{x} is the coefficient used in the first term of the infinite sum which represents the 
analytical solution for a beam with ∆ = 0. R’{x} is the mirror coefficient used in the solution of the 
static bending beam test. 
 
The first order approximation for the deflection along the beam is given by: 
 

{ } { } ( ) 2
14

1

4
0

12
1

2
0

*
1t.0.i

mix

3
0

Cos21

e

ISXR

LF
t,xV

γ
ξ
ωγ

ξ
ωϕ

ϕω

×+×××−

×
××

×
≈






 −

   [35] 

 

with { } { }
{ }

{ } beam

sensor

sensorsensor

4

beam

clamp
4

1 M

M

XR

AR

XRM

M

AR
1 ××+×+=

ππγ                [36] 

 
The deflection equation above is equal to the equation belonging to a viscous-elastic mass-spring 

system with a spring constant { } { }XR
L

IS
XK mix ×

×
=

3
 and an equivalent mass Mequi.{x}:  

 

           

{ } { } { }

{ }
{ }

{ } { }
{ }[ ] sensor2

sensor

clamp

beam412
1

.equi

M
XR

ARXR
M

AR

XR
                    

M
XRXK

XM

×
×

+×

+×=×=
π

γ
ξ

                                          [37] 

 
Notice that both the spring constant and the equivalent mass depend on the position X at which 
the deflection is measured. Normally this will be at the location of the sensor, which in return is 
often placed in the centre of the beam (giving the highest amplitude). In that case the equivalent 
mass is given by equation 38. 



 14

               

sensorclamp

beam.equi

M

L

A
Sin

1
M

L

A
Sin                     

M

L

A
Sin2

1

2

L
M

×






 ×

+×





 ×

+×






 ××

=








π
π

π
                            [38] 

Some equipments use the deflection measured at the inner clamp. In those cases the equivalent 
mass is given by: 
 

           

{ }

sensor
2

sensor2

clamp

beam
2

.equi

M

L

A
Sin

L

X
Sin

M                     

M

L

A
Sin2

1
AM

×






 ×







 ×

+

+×






 ××

=

π

π

π

                                       [39] 

Instead of the function R{x} it is better to use the modified function R’{x} which gives better 
results in the backcalculation. Moreover, because for decreasing frequencies the equations become 
equal to the ones of a quasi-static system (ω0 = 0).  
 
For the equipment at the Road & Hydraulic Eng. Div. of Rijkswaterstaat the following figures 
are valid: Effective length L of the beam = 400 mm, Distance A between inner and outer 
clamp = 135 mm. With these figures the following coefficients are obtained. 
 
Using the deflection measured at the centre of the beam: 
Mequivalent =  0.5731 . Mbeam + 0.8725 . Mclamp + 1.1461 . Msensor   (using R{x}) 
Mequivalent =  0.5738 . Mbeam + 0.8755 . Mclamp + 1.1423 . Msensor   (using R’{x}) 
 

Using the deflection measured at the inner clamp of the beam: 
Mequivalent =  0.6568 . Mbeam + 1.0000 . Mclamp + 1.3136 . Mcentre    (using R{x}) 
Mequivalent =  0.6555 . Mbeam + 1.0000 . Mclamp + 1.3047 . Mcentre    (using R’{x}) 
 
In case of ASTM specifications (A=L/3) the following figures are obtained: 
 

Using the deflection measured at the centre of the beam: 
Mequivalent =  0.5774 . Mbeam + 0.8660 . Mclamp + 1.1547 . Msensor   (using R{x}) 
Mequivalent =  0.5785 . Mbeam + 0.8696 . Mclamp + 1.1500 . Msensor   (using R’{x}) 
 

Using the deflection measured at the inner clamp of the beam: 
Mequivalent =  0.6667 . Mbeam + 1.0000 . Mclamp + 1.3333 . Mcentre    (using R{x}) 
Mequivalent =  0.6652 . Mbeam + 1.0000 . Mclamp + 1.3225 . Mcentre    (using R’{x}) 
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Short Guidelines for the EXCEL files Visco1 and Visco2 
 
Both Excel files consist out of three tabs: “Input-Output”; “Overhanging-Beam” and “Extra-
Moving-Masses”. The calculation procedures in both files are identical and differ only by the 

iteration procedure as described in the chapter “General Iteration Procedure for ∆ > 0”. 
In the file Visco1.xls an extra option is given for the backcalculation if real measured deflections 
and phase lags are given (see below). The main tab is “Input-Output”. The process starts with the 
input (bold red figures) for the: 
 

Parameter Cell Dimension Parameter Cell Dimension 
Total length of 

beam 
B2 [m] 

Outer span 
Distance A 

E2 [m] 

Effective length 
of beam (span) 

B3 [m] 
Position X of 
calculation 

E3 [m] 

Height of beam B4 [m] Position sensor E5 [m] 
Width of beam B5 [m] 

Mass of plunger B6 [kg] 
Mass of sensor B7 [kg] 
Mass of beam B8 [kg] 

Stiffness 
Modulus 

B10 [Pa] 

Material phase 
lag 

B11 [o] 

Force B14 [N] 

The following parameters are related to the input 
and printed in blue italic characters: 
 

- Density of the beam (B12); 
- The bending Moment (B13); 
- Overhanging Beam-end D (E4); 
- Position outer clamp (E6); 
- Position inner clamp (E7). 
 

 
With this input the static deflection can be calculated and is given in cell E18.  The value for the 
frequency is put into cell C19. The calculated deflection and phase lag for position X (cell E3) are 
given in row 19 together with the backcalculated values for Smix, phase lag and strain using the 
calculated deflection and phase lag in combination with the modified first order approximation. An 
example is given on the next page in figure 3. It should be noticed that the exact analytical solution 
is build up out of an infinite series of sinusoidal terms. Because the accuracy of Excel calculations 
is limited to around  10-24 the summation is limited also because the values of higher terms decrease 
fast. Furthermore, the implication of this limitation is that a value of  less than 10-20 can be 
considered to be zero. 
 
In cell C19 the chosen frequency [Hz] is put in. The final output is given in the same row.  
 
On tab “Overhanging-Beam” the calculations are given if only the mass of the beam was taken into 
account and not the extra moving masses due to plunger and sensor. The output figures are printed 
in the cells of block A5 to H8 (Figure 4.). In the cells of block I5 to J9 the output for the control 
calculations is given with respect to boundary requirements. 
 
At last on tab “Extra-Moving-Masses” the calculations are performed if also the extra point loads at 
the position of the inner clamps are taken into account. As explained before the answers have to be 
obtained by iteration. An example is given in figure 5. The iteration procedure starts with the values 
obtained from the calculations on tab “Overhanging-Beam” when only the mass of the total beam is 
taken into account. In total nine iterations are performed. If the chosen frequency is not close to the 
Eigen frequency this number of iterations is more than satisfactorily. An approximation of the first 
Eigen frequency is given in the cells F4 and I4 on the tab “Input-Output”. 
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Columns 

A B C D E 
 Beam Characteristics      Positions   

 Total length L*  [m] 0.450    Distance A (inner and outer clamp) [m] 0.135 
 Effective length L  [m] 0.400    Xbeam [m]  (X=0 :: begin of beam) 0.225 
 Height H [m] 0.0503    Delta 0.025 

 Width  W  [m] 0.0628    X Sensor [m] Default: = L*/2 0.225 
 Mass plunger Mv [kg] 5.562    Position outer clamp [m] 0.025 

 Mass sensor [kg] 0.140   
 Position inner clamp [m] =     
 Position plunger mass 0.160 

 Mass beam [kg] 3.254      

 Material parameters       

 Modulus   Smix  [Pa] 2.71E+09   

 Phase lag  ϕ  [o] 35.2   

 Density ρ  [kg/m3] 2289  

Figure 3.  
Input figures for tab “Input-Output” 

 

 Moment I [m4] 6.660E-07    
       

 Force  F  [N] 52    

ξo 16    

Row 
18/19 0 

Static 
 Deflection [m] 3.271E-05 

Smix  [Pa] 
 Backcalculated

ϕ  [o]  
Back 

ϕ  [o] 
 Measured

ε [m/m] 
 Calculated

ε [m/m] 
 Actual 

Ratio 
 ε 

Ratio 
Smix 

Ratio 
 ϕ 

Frequency  
[Hz] 8 

"Dynamic" 
 Deflection  [m] 3.302E-05 2.713E+09 35.255 35.623 4.896E-05 4.897E-05 100.0% 100.0% 100.0% 
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Position :   Xbeam Xclamp Xsensor  Position :  Xbeam Xclamp Xsensor CONTROL 

Deflection 
[m] 3.280E-05 2.872E-05 3.280E-05 Smix back 

[Pa] 2.713E+09 2.713E+09 2.713E+09 
Deflection & Strain at X=Delta 

Deflection should be zero  
Deflection       -      Strain 

ϕ 
[o] 

35.35 35.35 35.35 ϕ back 
[o] 

35.25 35.25 35.25 2.69E-22 3.01E-07 

Strain 
[m/m] 4.862E-05 4.841E-05 4.862E-05 Strain Cal. 

[m/m] 4.863E-05 4.863E-05 4.863E-05 
Deflection & Strain at X=0    

Strain should be zero     
Deflection       -      Strain 

If only the mass of the beam is taken into account the results above are obtained  6.41E-06 1.64E-23 

 
 

Figure 4 
Example of output figures for tab “Overhanging-Beam”  

including the control calculations for the boundary requirements 
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Deflection and Phase at Xbeam if all masses are taken into account 

        

  
Only Mass beam First 

iteration Second Third  Fourth  Fifth Sixth Seventh Eight Nine  
(It9-It8)/It9 

[%]  
Deflection [um] 32.8 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 Xbeam 0.000%  
Phase lag [o] 35.35 35.62 35.62 35.62 35.62 35.62 35.62 35.62 35.62 35.62 Xbeam 0.000%  

Control after 9 
iterat. Deflection [m] 3.302E-05 28.91 28.91 28.91 28.91 28.91 28.91 28.91 28.91 Xclamp 0.000%  

Deflection at X=∆ ϕ meas. [o] 35.62 35.62 35.62 35.62 35.62 35.62 35.62 35.62 35.62 Xclamp 0.000%  
7.40E-21 ϕ  back [o] 35.25    Xclamp Xsensor 33.02 33.02 33.02 33.02 Xsensor 0.000%  

Strain at X=0 Smix back [Pa] 2.713E+09  
Deflection 

[m] 2.891E-05 3.302E-05 35.62 35.62 35.62 35.62 Xsensor 0.000%  

9.57E-22 Actual Strain 
[m/m] 4.897E-05  

ϕ 
measured 

[o] 35.62 35.62 

 
Calc. Strain 

[m/m] 4.896E-05  
ϕ back. 

[o] 35.25 35.25 

  

 

Smix 
back. [Pa] 2.713E+09 2.713E+09

Figure 5.Example of 
output figures for tab 

‘Extra-Moving-Masses 
Actual 
Strain 
[m/m] 4.866E-05 4.897E-05

DEFLECTION for Xbeam 

Calc. 
Strain 
[m/m] 

4.896E-
05 4.896E-05
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Special option in Visco1.xls for backcalculation 

 
A special option in Visco1.xls allows the determination of the mistake made with the modified first order 
backcalculation procedure and the calculation of the ‘correct’ values. This is done in block A22 till D30 of 
tab Input-Output. The measured deflection and phase lag are put into cells B22 and B24. Seed values for the 
Smix and material phase lag are put into cells B10 and B11. The program calculates the deflection and 
phase lag, which are related to these input values (B23 and B25). Now in cell B26 the squared sum of the 
deviations between measured and calculated values is determined. Using the option Solver in Excel and 
varying the input values for Smix and phase lag can minimize this sum. The backcalculated Smix and phase 
lag values are given in the cells B28 and B30. In cells C28 and C30 the deviation percentage is given. 

 

Deflection measured real 3.2975E-05   
Deflection calculated 3.3018E-05   

ϕ measured real 35.623   

ϕ calculated 35.6232   
Squared Summation 1.714E-06 This value is minimized by the solver option 

Smix input 2.71E+09  
Smix back 2.71E+09 -0.03%

ϕ input 35.244  

ϕ backcalculated 35.255 0.03% 

Minimalization by variation in input 

data for Smix and ϕ 

 
Figure 6. Example of the output for the special option in Visco1.xls 
 
 

Remarks 
 
1. In the Excel program file the phase angles are calculated as the argument of a complex number 

instead of using the arc tan function. This is done because the argument calculation gives the 
correct value between – π and + π while the arc tan function gives a value between – π/2 and + 
π/2. If the real part is denoted by a and the imaginary part by b the arc tan function only takes 
into account the sign of the quotient a/b while the argument function takes into account both the 
sign of a and the sign of b. The argument function is given by:  

 
C.ARGUMENT(COMPLEX(a;b)) 

2. The absolute value of a complex figure z is calculated as: 
 

C.ABS(z) or C.ABS(COMPLEX(a;b)) or as √(a2+b2) 
 

3. The accuracy of the calculations in Excel is good but not extremely high. E.g. the constant pi is 
only given in 14 decimals. Therefore results smaller than 10–15 can be considered to be zero. 

 
4. The two (free) Excel files can be ordered  by sending an E-mail to:  

 
A.C.Pronk@DWW.RWS.MINVENW.NL 
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5.   An example is given below for a beam of 5 kg with a total length of 450 mm while the mass of 
the plunger is 10 kg and values for the stiffness modulus and the phase lag are 5 GPa and 20 o 
respectively. 
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Figure 7.   An example of the errors made in the backcalculation using the modified 

first order approximation 


