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Project goal

Assess the multi-decadal impact* of river 
management measures on the lower Rhine River, 
considering climate change. 

*Impact = large-scale bed level change
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Lower Rhine River



Overview of assesssed measures 4

Sediment nourishments Floodplain lowering

Czapiga et al. (2022; JHE)



Proposed approach: schematized 1D model of the lower Rhine River 5

Ylla Arbós et al. (2023; GRL)

› Representative of the lower 
Rhine River

› Focus on physics-based system 
understanding

› Built to assess climate change 
impacts



What the model can and can’t do 6

Can do

› Large-scale response (300 km)

› Long-term response (100 years)

› Understanding system behavior

› Type of response (incision/aggradation)

› Direction and timescale of propagation 

› Order of magnitude of change

› Short-term, natural variability of the 
system

› Local width variations
› Local effects (e.g. structures)
› Floodplain deposition
› Bifurcation dynamics (cf. PhD Chowdhury, 

TUD)

Can’t do



Climate scenarios 7

› Water discharge (historical data, KNMI’14 scenarios)

› Sea level (KNMI’14, IPCC’13)

› Scenario combinations for moderate and high-end 
climate change (following Ylla Arbós et al. 2023)

Upstream water 
discharge

Upstream 
sediment flux

Sea level
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Floodplain lowering



Floodplain lowering measures 9

Floodplain lowering› Goal we assess: channel bed incision mitigation

› Assessment limited to the effects of changes in 
flow velocity during floods (no sediment floodplain 
deposition)

› Relative to previous studies: we focus on system 
behavior, we add climate change scenarios



Floodplain lowering modeling plan 10

› Lower floodplain elevation by:

› 0.5 m

› 1 m

› 1.5 m

› Reaches

› BRWL (all)

› BR (Spijk to PKop)

› Upper WL (PKop to rkm 900)

› Middle WL (rkm 900 to St Andries)

* No lower WL because it is already aggradational

› Climate scenario combination

› Reference (no climate change)

› Moderate 

› High-end

Total of 39 runs



Channel response to floodplain lowering 11



Floodplain lowering Bovenrijn-Waal – no climate change 12

› Negligible effects in areas of most incision
› Reduced incision in middle WL (slightly), increased incision downstream.

50
-y

ea
r 

be
d 

le
ve

l c
ha

ng
e 

re
l. 

to
 in

iti
al

 s
ta

te
 (m

)



Floodplain lowering BRWL– effect of lowered height 13
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› Both erosion-mitigation 
efficiency and additional 
downstream incision scale with 
lowered height

Zone of reduced 
incision

Negligible change

Downstream-
migrating incision 
wave



Other floodplain lowering studies 14

WWF, Ruimte voor 
Levende Rivieren 
(2021)

› 2m lowering in 
upper WL

› On average, erosion-
mitigation of ~15-20 
cm.

Filling of 
Nijmegen pit? Filling of St. 

Andries area?

Filling LTDs 
zone? On average, 

reduced incision 
by ~15 cm

Van Vuren (2005)

› 1.5 m lowering in 
upper WL

› Incision mitigation of 
≤ 15 cm after 100 
years

This study
› 1.5 m lowering in BRWL
› Incision mitigation of ≤ 25 cm after 

100 years, incision downstream of 
measures



Floodplain lowering Bovenrijn-Waal – climate change 15

› Negligible effects when considering climate change
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Effects on water level and flow depth – selected test cases 16

› Considered discharges: 1000, 1500, 2000, 4000, 6000 m3/s

› Lowered reach: Bovenrijn-Waal

› Lowered height: 0.5, 1.5m

› Climate scenarios: no climate change (reference), high-end climate change



1.5 m lowering1.5 m lowering

Effects on water level and flow depth – summary 17

› For low discharges (inactive flooplains), hydrodynamic changes are determined by changes in bed level in the 
zones of reduced incision, water level is slightly higher. Flow depth changes are small.

› For high discharges (active floodplains), hydrodynamic changes are determined by the floodplain lowering 
measures. Water levels and flow depth decrease.
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Floodplain lowering - conclusions 18

› Floodplain lowering can be beneficial for 
flood risk (decreased water levels) but 
has negligible effects on large-scale 
morphodynamic change, especially 
considering climate scenarios (~0-20 cm 
of erosion mitigation relative to the 1.5 m 
expected with climate change).

› Floodplain lowering mildly reduces 
incision over the lowered area, but also 
results in a downstream-migrating 
erosion wave downstream of the 
measure.

› Our results agree with previous studies 
(Ruimte voor Levende Rivieren, 2021; Van 
Vuren, 2005)
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Sediment nourishments

Czapiga et al. (2022; JHE)



Sediment nourishments – test cases 20

› Goal we assess: channel bed incision mitigation

› Nourishments modeled as humps on initial bed elevation

› Three different schemes:
› Upstream scheme
› Spaced-deposit 
› Full spread

› Four different grain size distributions:
› Mean Bovenrijn
› Mean upper Waal
› Mean middle Waal
› Mean lower Waal

› Nourishment volumes:
› 50000 m3/a (Bovenrijn)
› 70000 m3/a
› 150000 m3/a (selected cases)
› 250000 m3/a (selected cases)

› Climate scenario combinations:
› No climate change
› Moderate climate change
› High-end climate change

Building up on Czapiga et al. (2022), Liptiay (2023), we focus on system behavior and add climate scenarios

A) Hump of 0.5 m x 3 km
B) 50’000 m3/a

Full Spread Scheme

C) 10 km spacing
D) 20 km spacing
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Sediment nourishments – some orders of magnitude 21

Nourishments in this study
› ~ 370’000 m3 every 5 years = hump with dimensions 

0.5 m x 3 km x full river width  70’000 m3/a
+ Selected runs of 50’000, 150’000, 200’000 m3/a

Nourishments Liptiay (2023)

› ~ 11’000 m3 - 750’000 m3, every 3 months, 1 year, 5 
years (preferred)  (11’000-150’000 m3/a)

Pilot nourishments Bovenrijn
› ~ 70’000 m3 2x one-time

Nourishments Niederrhein
› ~ 50’000 m3/a

Coastal sand nourishments
› 12’000’000 m3/a
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Effect of nourishment spreading and grain size (no climate change) 22

› Ongoing bed incision is not stopped but slightly reduced
› Coarse nourishments (e.g. upper Waal composition) require spreading 
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Effect of nourishment spreading and grain size (no climate change) 23

› With finer grain sizes (e.g. lower Waal composition), spreading doesn’t matter
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Effect of nourishment spreading and grain size (no climate change) 24

› For spread nourishments, coarser grain sizes have higher erosion reduction potential 
than finer grain sizes.

840 860 880 900 920 940

River km

2

4

6
8

D
g

 (m
m

)

Gravel

Sand

50
-y

ea
r 

be
d 

le
ve

l c
ha

ng
e 

re
l. 

to
 in

iti
al

 s
ta

te
 (m

)



Effects of climate change 25

› Considering climate change, most nourishment schemes still lead to > 1 m 
of channel bed incision by 2050.
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Effect of nourished volume – no climate change 26

› Volumes of 150’000 -200’000 m3/a largely reduce incision by 2050 over 
most of the domain, but also lead to aggradation in the middle Waal.
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Effect of nourished volume – temporal evolution up to 2050 27
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› Note enhanced 
aggradation in the lower 
Waal for large nourishment 
volumes

› Consider the use of 
optimized nourishment 
schemes

Consider spread-out nourishments exclusively in the upper Waal to limit 
downstream incision



Effects on water level and flow depth – selected test cases 28

› Considered discharges: 1000, 1500, 2000, 4000, 6000 m3/s

› Nourishment scheme: full spread, upper Waal mixture

› Nourished volumes: 70’000 m3/a, 200’000 m3/a

› Climate scenarios: no climate change (reference), high-end climate change 840 860 880 900 920 940
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Effects on water level and flow depth – summary 29

› Sediment nourishments lead to reduced erosion and thus to higher water levels
› The reduced erosion is associated with a larger channel slope, leading to smaller flow 

depths
› These effects are more pronounced for

› Larger volumes of nourished sediment
› Smaller discharges

› These observations hold for the different climate scenarios
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Nourishments vs floodplain lowering 30
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Conclusions 31

› Floodplain lowering measures have a limited effect on erosion mitigation 

› ~ 0-20 cm of reduced erosion by 2050, relative to the > 1.5 m expected with climate change

› Sediment nourishments have more potential than floodplain lowering to reduce channel bed incision

› Nourishments reduce channel bed incision as well as increased incision due to climate change. However:
› Halting incision requires volumes of 150’000-200’000 m3/a

› Considering climate change, most nourishment schemes still lead to >1 m of incision by 2050

› Effect of nourishments largely depends on parameters (grain size, spreading, nourished volume and 
frequency)

› Nourishment grain size and spreading scheme need to be considered simultaneously
› Coarser grain sizes require spreading
› Largest erosion-reduction potential for spread-out coarse nourishments



Recommendations 32

› Systematically consider* conceptual large-scale physics of channel adjustment on future intervention 
design

* in addition to numerical modeling efforts

› Consider the effects of climate change* on future channel adjustment

* update numerical simulations as new climate scenarios become available

› Bifurcation dynamics in this study are largely simplified  improve models to better capture bifurcation 
dynamics (e.g., PhD project M.K. Chowdhury, insights from 2D analysis)

› Assess the influence of spatial density of channel widening-type measures (e.g., floodplain lowering, 
multiple channel systems) 

› Assess whether multiple, smaller-scale measures are more effective at mitigating channel bed incision 
than longer measures

› Assess how different channel widening-type measures compare to each other, in terms of physics of 
channel adjustment, and erosion mitigation efficiency



Thank you!
c.yllaarbos@tudelft.nl
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